Uranium Isotopic Fractionation Induced by U(VI) Adsorption onto Common Aquifer Minerals.
نویسندگان
چکیده
Uranium groundwater contamination due to U mining and processing affects numerous sites globally. Bioreduction of soluble, mobile U(VI) to U(IV)-bearing solids is potentially a very effective remediation strategy. Uranium isotopes (238U/235U) have been utilized to track the progress of microbial reduction, with laboratory and field studies finding a ∼1‰ isotopic fractionation, with the U(IV) product enriched in 238U. However, the isotopic fractionation produced by adsorption may complicate the use of 238U/235U to trace microbial reduction. A previous study found that adsorption of U(VI) onto Mn oxides produced a -0.2‰ fractionation with the adsorbed U(VI) depleted in 238U. In this study, adsorption to quartz, goethite, birnessite, illite, and aquifer sediments induced an average isotopic fractionation of -0.15‰ with the adsorbed U(VI) isotopically lighter than coexisting aqueous U(VI). In bicarbonate-bearing matrices, the fractionation depended little on the nature of the sorbent, with only birnessite producing an atypically large fractionation. In the case of solutions with ionic strengths much lower than those of typical groundwater, less isotopic fractionation was produced than U(VI) solutions with greater ionic strength. Studies using U isotope data to assess U(VI) reduction must consider adsorption as a lesser, but significant isotope fractionation process.
منابع مشابه
Ion Imprinted Affinity Cryogels for the Selective Adsorption Uranium in Real Samples
In this research, selective adsorption of U(VI) in aqueous solutionsin the presence of various lanthanide ions by using U(VI)-imprinted cryogel polymer was conducted. For this purpose, the prepared pHEMA-(MAH)3-U(VI) cryogel polymer by free radical polymerization method. U(VI) was desorbed with 5.0 mol/L HNO3 and thus U(VI)-imprinted were created onto p-HEMA-(...
متن کاملSustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction.
Previous field studies on in situ bioremediation of uranium-contaminated groundwater in an aquifer in Rifle, Colorado identified two distinct phases following the addition of acetate to stimulate microbial respiration. In phase I, Geobacter species are the predominant organisms, Fe(III) is reduced, and microbial reduction of soluble U(VI) to insoluble U(IV) removes uranium from the groundwater....
متن کاملRemoval of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies
The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...
متن کاملRemoval of uranium (U(VI)) ions using NiO NPs/Ag-clinoptilolite zeolite composite adsorbent from drinking water: equilibrium, kinetic and thermodynamic studies
The present research describes the performance of NiO NPs/Ag-clinoptilolite composite adsorbent for the removal of uranium (U(VI)) ions from drinking water of Dezful city-Iran. Prior to the experiment reactions, Na-clinoptilolite was chemically treated with NaCl, Silver ions (Ag+) and subsequently Nickel (NiO) NPs to prepare NiO NPs/Ag-clinoptilolite. The samples were characterized by SEM, AAS,...
متن کاملFormation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer
The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental science & technology
دوره 50 22 شماره
صفحات -
تاریخ انتشار 2016